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Viscosity, Granular-Temperature, and Stress Calculations for

Shearing Assemblies of Inelastic, Frictional Disks*

OTIS R. WALTON and ROBERT L. BRAUN
Lawrence Livermore National Laboratory, Livermore, CA 94550

Synopsis

Employing non-equilibrium molecular-dynamics methods the effects of two
energy loss mechanisms on viscosity, stress, and granular-temperature in
assemblies of nearly rigid, inelastic, frictional disks undergoing
steady-state shearing are calculated. Energy introduced into the system
through forced shearing is dissipated by inelastic normal forces or through
frictional sliding during collisions resulting in a natural steady-state
kinetic energy density (granular-temperature) that depends on the density and
shear rate of the assembly and on the friction and inelasticity properties of
the disks. The calculations show that both the mean deviatoric particle
velocity and the effective viscosity of a system of particles with fixed
friction and restitution coefficients increase almost linearly with strain
rate. Particles with a velocity-dependent coefficient of restitution show a
less rapid increase in both deviatoric velocity and viscosity as strain rate
increases. Particles with highly dissipative interactions result in
anisotropic pressure and velocity distributions in the assembly, particularly
at.Tow densities. At very high densities the pressure also becomes
anisotropic due to high contact forces perpendicular to the shearing
direction. The mean rotational velocity of the frictional disks is nearly
equal to one-half the shear rate. The calculated ratio of shear stress to
normal stress varies significantly with density while the ratio of shear
stress to total pressure shows much less variation. The inclusion of surface
friction (and thus particle rotation) decreases shear stress at low density
but increases shear stress under steady shearing at higher densities.

INTRODUCTION

The mechanical behavior of cohesionless granular solids is important in a
wide variety of industrial, engineering, and scientific fields including such
diverse areas as the flow of solids through chemical processing plants,
landslides, agriculture, mining, transportation and handling of solids and
even recently proposed solar and fusion energy facilities. Despite wide

interest and more than 100 years of experimental and theoretical
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investigations many aspects of the behavior of flowing granular solids are
still not well understood. This situation exists primarily because of the
difficulties involved in measuring pertinent parameters in such flows. Recent
theories based on microstructural considerations!~% are providing insight

into the differences between the statistical mechanics of systems of
dissipative particles and traditional gas-dynamics behavior. This theoretical
activity is complemented by recent molecular-dynamfcs-]ike computer
simulations of shearing flows of inelastic particles®~?,

The theoretical descriptions:have generally dealt with systems of smooth
spheres and only very recently have the effects of.friction and particle
rotation been examined®. The shearing flow computér studies, like the work
reported in this paper, have generally been Timited to two-dimensional systems
of disks. Cundalll® has.examined three-dimensjonal systems of spheres, but
only under conditions of quasi-static deformations.

In this work we numerically integrate the equations of motions for all
particles in a system undergoing uniform shearing with periodic-boundaries; a
configuration patterned after non-equilibrium molecular-dynamics studies of
transport coefficients by Hoover!!, Hoover and Ashurst!? and
Evans'®*'*, This simulation differs is some significant ways from the
molecular dynamics studies it is patterned after. First and most importantly
the particle interactions are non-conservative so that kinetic energy is
dissipated in every co1li;ion. No artificial "thermostat" or constrained
equations-of-motion are ﬁeeded to maintain a constant temperature under steady
shearing conditions. Instead, a natural "granular temperature” or mean
deviatoric velocity is determined by the natural progression of dissipative
collisions and becomes one of the many output diagnostic quantities

calculated. A second distinction is that even though the particles modeled



are symmetric circular disks, they experience tangential (non-central)
friction forces during collisions. These friction forces result in particle
rotations and also contribute non-symmetric terms to the stress tensor. While
a non-symmetric stress tensor could result from such forces, in all uniform
shearing flows calculated a symmetric stress tensor was obtained except for
time averages over very short time periods (including only a few collisions).
It should be noted, however, that in many cases the conditions modeled are far
from a traditional thermodynamic equilibrium state, as evidenced by the
anisotropy in both the pressure and velocity distributions. This anisotropy

was especially apparent at low solids concentrations with highly dissipative

particles.

UNIFORM SHEAR MODEL

The two-dimensional steady-state shearing model consists of an assembly of
a small number of equal-sized circular disks (usually 30) in a rectangular
calculational cell with periodic boundaries on all four sides. The image
cells above and below the primary cell move to the right and left,
respectively, creating a layered shearing structure. Figure 1 shows the
primary calculational cell and the nearest moving periodic image cells, with
one particle and its various periodic images. The initial coordinates of the
particles are automatically generated by placing a specified number of
particles in a hexagonal, c1ose-packed'array then increasing the interparticle
separation to uniformly fill the cell. The particles‘ radii are set to unity
and the cell dimensions selected such that a specified solids packing fraction
is obtained for the given number pf particles. Initial particle velocities
are randomly assigned to one-half of the particles and velocities in the

opposite directions are assigned to the remaining particles in order to obtain
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Figure 1. One particle and its periodic images in the primary calculational
cell and in the nearest moving periodic image cells used to produce

steady state shearing.
zero velocity for the system center of mass (without shearing). A1l
velocities are initially scaled to achieve an estimated average deviatoric
particle velocity. Then an additional steady-state shearing velocity,
proportional to the y-coordinate, is superimposed in the x-directibn.
Newton's equations-of-motion for particle translation and rotation are solved
by an explicit, time-centered, finite~difference algorithm (with an iterative
predictor-corrector algorithm employed when velocity-dependent forces are

used). Particle interactions are calculated for the collision of each



original particle with every other particle or with the nearest periodic image
of every other particle in the infinite lattice of image cells. The moving
image cells provide a steady source of kinetic energy to the system which is
dissipated by the frictional, inelastic collisions between particles. For
each point calculated in the parameter study below, the systém was allowed to
arrive at steady state (usually taking from 20 to 100 collisions per particle)
and then cumulative time averages were taken of various quantities for a
period typically including frbm 200 to 1500 collisions per particle. After
each cg]culation a running average graph of each time-averaged quantity was
made for ease of evaluating whether steady state had been achieved during the
averaging time period. Each particle's deviatoric velocity was obtained by
subtracting the mean shearing field u, = ¢ y from the calculated particle
velocity. In addition, the following quantities were monitored during each

calculation: the mean translational kinetic energy density in the system,
<KET>/A, where

KEp = <J %'mi [(vy 4= u )2 + v;i] >,
1 .

the average deviatoric speed of the particles, <UF>‘/2. where

z 51/2

PR IS VL IR %_ g [(vxi' ux)z + vy1

the average rotational kinetic energy density, <KEr>/A, where

- 1 2
<KE > = <§ 5 I up>

the mean rotational velocity of the particles, <w>, and the time average of

the momentum-flux-density tensor (i.e., the stress tensor) instantaneously

given by the expression

B by (y-w) e Ry By

in which the first term on the right is a symmetric dyad representing the

-5-



kinetic contribution to the. stress and the second dyadic term represents the
collisional or potential contfibution to the stress tensor and contains
antisymmetric components if the force between two particles, fjj, is not
parallel to the line joining their centers, Bij' The kinetic and

collisional terms for the stress tensor were separately averaged in time and a
number of quantities involving the stress tensor were also calculated
including: the effective viscosity, n = '(pxy + pyx)/zé, where € is

the shear'rate, (aux/ay); the effective compressibility of the system,

A(pxx + pyy)/2<KET>, and various ratios of components of the stress

tensor.

Interparticulate Normal Force Model

During each interparticle collision the actual normal and tangential
forces acting between rea],macrbscopic disks are approximated by fdrce
displacement models that inciude position-dependent hysteresis. Approximately
50 ca]culatioha] time steps are used to calculate a typical collision so that
the accuracy of the trajectories and energy losses occurring during each
collision is on the order of one part in 10*. The details of the
calculations leading to the model for the inelastic, frictional contact forces
used in this study are reported elsewhere!® so they are only briefly
reviewed here. Dynamic finite element calculations using the DYNA2D computer
program'® confirm that little residual energy remains in elastic waves
within two perfectly elastic spheres after a direct impact. These
calculations also show that contact tiﬁe during normal impacts varies as tﬁe
inverse one-fifth power of the relqtiVe approach velocity -- as predicted by
Hertzian contact theory for impacts between perfectly elastic spheres!?.

These calculations confirm that, in general, collisions between elastic

spherical particles can be closely approximated by assuming-that a non-linear



(Hertzian contact) spring acts between two essentially rigid bodies. Further
finite element calculations using elastic-perfectly-plastic material models
show that the coefficient of restitution for normal impacts is a strong
function of the impact velocity, in agreemenf\with experimental evidence!®.
Further quasi-static finite-element calculations using the NIKE2D computer
program’® reproduced Hertz's 3/2-power normal force variation with relative
approach for perfectly elastic spheres. An elastic-perfectly-plastic material
description in the same finite elemént ca]culations.resulted in an almost
linear relationship between normal force and initial loading displacement.
Experimental measurements of load vs. relative approach for steel ball
bearings striking the flat end of an aluminum rod also show an almost linear
loading after a small initial curved region'®. Both the finite element
calculations of elastic-plastic spheres and the tests of steel balls on
aluminum exhibited very steep unloading curves that were almost linear. The
slopes of these unloading lines were steeper for impacts that experienced a
larger maximum force before unloading (i.e., with higher velocities of impact).
For ease of calculation in our two-dimensional disk interaction model we -
approximate'the behavior obtained in the above calculations (and observed in
the experiments) with a partially-latching-spring model. In this model, the

normal force is given by

N = Kja for loading, and

(2)

where a is the relative approach (overlap) after initial contact, and a,

Kola - ay) for unloading,

is the value of a where the unloading curve goes to zero. No negative (or
tensile) values are allowed for N. Figure 2 shows a schematic of this
partially-latching-spring force model. Initial loading is along the Tine from
point a to point b with slope K1. If unloading is initiated after reaching

point b then it will be along the 1ine from b to c. Reloading from point ¢
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Figure 2. Schematic of partially-latching-spring model and the corresponding
force deflection curve used to describe inelastic normal direction

forces acting between two colliding disks.
follows the path ¢, b, d and subsequent unloading from point d follows the
path d, f, ¢, a. The normal force model thus e#hibits a position dependent
hysterisis which results in a.less-than-unity coefficient of_restitution for
normal impacts. The model is employed in two modes. In the constant
coefficient of restitution mode all unloading lines (e.g. b ¢ and @ ) have
exactly the same slope, KZ’ and the resulting coefficient 6f restitution, e,
is given by.

e = (Ky/K,)2 (3)

where -e is the ratio of initial to final relative velocities in the normal
direction. In the variable coefficient of restitution mode, the unloading

slope, KZ’ is a linear function of the maximum force achieved before



unloading,
Ky = Ky +SF . . (4)
Using this model, the coefficient of restitution depends on the relative

velocity of approach, v_, as given by

0
e = [wo/(Svo + wp)]*/? (5)

where w = (ZK]/m)‘/z. Figure 3 shows this variation of e with

1-0 r 1 LB I I 1 L LB 1 [ L 1 i 1 I _
A == Variable e B
A .
| A Brass (scaled v)
0.8 A —
0O Lead (scaled v)
[ L a
=
2
o
£ 06
8
° -
-
g
2 04
15 .
-]
o -
0.2
0 ol P M AT B N [

0.1 1.0 10.0

Relative impact velocity

Figure 3. Coefficient of restitution given by variable e model (Equations 2
to 5) and obtained in impact tests with identical spheres of brass
and lead'®. Velocities scaled so that 1 corresponds to e = 1/2.



non-dimensional impact velocity, volvo.5 (where vo.5 is the relative
approach velocity that produces a coefficient of restitution of one-half).
Also shown in Figure 3 are values of the coefficient of restitution for
collisions between identical spheres of brass and lead as reported by
Goldsmith!®, As can be seen from this figure the variable coefficient of
restitution model of equations (4) and (5), while not a perfect fit, matches
the experimental data much closer than would a constant coefficient of
restitution. Because of the simplicity of the form of equation (4) we choose
to use this model for the variable coefficient of restitution calculations in
the parameter study below. It is expected to give a difference from constant

e behavior that is at least as large as might be expected for real materials.

Incrementally Slipping Friction Model

The tangential friction force model used in these ca]culafions is
patterned after theoretical models for the friction forces acting between
elastic spheres in contact developed by Mindlin’°.$nd Mind1in and
Deresiewicz?!. Mindlin's expression for the tangential compiiance acting
during small displacements is based on the assumption that the approximate
Hertzian normal stress disfribution.over the circular area of contact is
unaffected by the tangential displacement. In this theory, the effective
tangential stiffness of a contact decreases with téngential disp)acement until
it is effectively zero when full sliding occurs. We employed functions that
approximate the expressions of Mindlin and Deresiewicz. The effective
tangential stiffness, KT, used in the model contacts is given by

T-T*)Y cor <Tip in N .
0 - — or slip in one direction (T increasing)

=7 Y | N .
Ko Q- 5) for slip in the other direction (T decreasing)
uN+T
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where T is the total tangential force, K, is the initial tangential
stiffness, u is the coefficient of friction, N is the total normal force,

vy is a fixed parameter usually set to one-third to agree with Mindlin's
theory, and T*, which is initially zero, is ;ubsequently set to the value of
the total tangential force, T, whenever the relative tangential s1ip reverses
direction. If the normal force, N, changes during the contact, the value of
T* in the above expressions is scaled in proportion to the change in normal
force.

On each explicit time step of the finite difference calculations a new
tangential force, T', is calculated incrementally from the old value of the
tangential force, T, the effective tangential stiffness, KT’ and the amount
of relative surface displacement between the contacting particles, As, by
the expression

T" = T+K;as (7)
with K. given by equation (6). Thus, in order to calculate the total
tangential force acting between each pair of particles, we need to keep only
two quantities, T and T* frém one time step to the next.

Figure 4 shows the tangenfial force vs. tangential displacement as
generated by equations (6) and (7) for a series of ever increasing amplitude
oscillations of the relative tangential surface displacement, s, with a
constant normal force, and an éxponent vy = 1/3. Experimental measurements
of initial displacements of frictional forces acting between metals in contact
(non-spherical bodies) produce force deflection curves that are qualitatively
quite similar to the model curve of Figure 4, but with a more gradual change
in slope, as would be produced with a larger value for the exponent, y, in

the model (for example, see Oden and Martins?2),
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Figure 4. Tangential force generated by incrementally-slipping friction model
with a constant normal force and ever increasing amplitude
alternating tangential displacements (y=1/3 in Equation 6).

For comparison with rigid body models that include frictional transfer of
tangential impulse in instantaneous collisions we can examine the effective
coefficient of rotational restitution, B, defined by

] = o '
Vis Bvs

where Vg is the relative tangential surface velocity between the two

particles just before impact and v'S is that relative velocity immediately

after the particles came apart. The value of B ranges from -1 for smooth
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(frictionless) particles to +1 for perfectly rough, perfectly elastic
particles. During a frictional encounter the tangential impulse that can be
transferred from one particle to the other is limited by the friction
coefficient and the normal impulse transmitted, so that,
(tangential impulse) < u (normal impulse).

Thus, for two identical particles the maximum change in the relative center of
mass velocity in the direction tangent to the qontact;'(Avt)max, is
given by

| (Avt)max = - sign(v Ju(1+e)v /2
where n is their relative normal direction velocity, and Vo is their
relative tangential surface velocity just before contact. By requiring that
the angular momentum about the contact point be conserved we find an upper
limit expression for 8,

B < =1 +u(l+e)tv /v 1(1+mr2/1 ) (8)
for collisions between equal sized particles, where mr'z/Io is 2 or 5/2 for
disks or sphéres; respectively. This expression results in values of 8 that
can exceed one when Vg is near zero (since the expression is singular at
that point). Various extra assumptions are §ften employed to restrict g8 to
values less than zero (e.g. assuming that friction can only reduce the
relative surface velocity and could not increase it once a value of zero is
reached’®) or to values less than one to conserve energy*.

The tangential and normal force models employed in this study
automatically produce values of B that are always at or below the
theoretical friction limit of équation (8). These models also include the
possible effect of spring-back of shear-deformation on the surface and can
produce values of B that are greater than zero for many impact situations

with relatively small initial relative tangential velocities. Figure 5 shows

the frictional upper bound to the. tangential restitution coefficient, B,
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Figure 5. Rotational restitution coefficient, 8, as a function of scaled
ratio of normal to tangent1a1 surface velocities for impacting
spheres. Curves are for various ratios of initial tangential to
normal stiffness, dotted line is frictional upper bound, Equation

(8). (L = & for disks and 2/5 for spheres).
(dotted 1ine) and the dependence of B as calculated by the above tangential
and normal force models for collisions between two equal-sized spheres with
various initial relative tangent{él-to-normal velocity ratios. The left-hand
side of the horizontal axis in this figure corresponds to a glancing impact
and the right-hand side to an incident angle about 30° from normal incidence

for non-rotating particles with friction and restitution coefficients of 0.5

and 0.8, respectively. For comparison, the theoretical work of Lun and
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Savage* uses various constant values of B (between -1 and 1) independent

of initial velocity ratio. Campbell and Gong® use a single value of 8 =

0.0, corresponding to near infinite fricfion, for all collisions between rough
circular particles. The exact shape of the deviation from the frictional
upper bound curve calculated by the present modeIs_depends on the ratio of the
initial shear to normal stiffness. The three curves in Figure 5 represent
three possible values for this ratio of 1.0, 0.8, and 0.67. The upper and
lower (dashed) curves represent the upper and lower theoretical 1imits given
by Mindlin corresponding to elastic spheres with the Poisson's ratios of 0.0
and 0.5, respectively. The middle curve corresponds .to a realistic initial
tangential stiffness to normal stiffness ratio of 0.8 which was used for all
calculations in the parameter study below. Most of the ca]ﬁulated quantities
in this study are not extremely sensitive to the exact form of the rotational
coupling. This is evidenced by the relatively good agreement obtained between

the stresses calculated in this study and the results of Campbell and Gong®

using a constant B8 = 0.0 rotational coupliing.

RESULTS

Comparison with 2-D molecular dynamics

To test the accuracy of the_model's integrgtion scheme and the validity of
the periodic-image co11ision'calculations, we compared our compressibility
factor with that calculated by Hoover and Alder for a 12-particle system of
rigid disks having a solids packing fraction 20% less thaﬁ that for hexagonal
close packing?3. For this comparison, we set the coefficient of restitution
to unity, the shear rate and the friction coefficient to zero and obtained a
thermodynamic equilibrium value for the compressibility of a 12-particle
system using interparticulate stiffnesses of K] = 10° and 107 (with unit

radius and unit mass disks). The calculated compressibility was corrected for
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the increased number of collisions occurring in a system with a fixed center
of mass (after Hoover and Alder2??), then plotted against the inverse of the
particle stiffness and extrapolated to zero inverse stiffness (corresponding
to perfectly rigid particles). The extrapolated value of 7.43 was in almost
exact agreement with the value of 7.42 reported by Hoover and A]dgr. In a
further comparison with these rigid disk results we calculated the effective
compressibility for a system of 30 smooth (frictionless) partfcles in a series
of non-equflibrium steady-state-shearing configurations ranging in solids
concentration from 0.025 to 0.775, with a coefficient of'restitution, e =
0.80. Each individual solids packing fraction had a unique mean deviatoric
velocity (and thus a unique kinetic energy density); however, this mean
deviatoric velocity changed by over an order-of-magnitude as the solids
packing fraction changed at the fixed shear rate. Also, the ratio of stress
components pxx/pyy varied from 1.4 to 0.8 over the calculated range of
densities, yet the effective compressibility for this non-equilibrium system
was surprisingly close to the compressibilities calculated in the equilibrium
rigid-disk study of Hoover and Alder. Figure 6 shows the compressibility
results of Hoover and Alder for their system of 12 particles (without an
explicit first order phase change) and also for their systeﬁ of 72 particles
exhibiting a first order phase change from fluid to solid between the solids
fractions of v = 0.665 and v = 0.705. The present frictionless
non-equilibrium shearing results shown on that same figure, are extremely
close to Hoover and Alder's rigid disk resﬁ1ts up to the phase change

density. Beyond that density they appear to be an extension of the fluid-like
behavior, at least up to solids concentrations of v = 0.200. Examination of
computer generated motion picturés of the particle motions in these shearing

calculations verified that fluid-1ike behavior was indeed being obtained up to

solids frictions as high as v = 0.775.
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Figure 6. Two-dimensional compressibility as calculated for 12 or 72 smooth
rigid disks in thermodynamic equilibrium by Hoover and Alder?®
and as calculated in the present non-equilibrium shearing flow
study with 30 inelastic, frictionless (lower points) and frictional
(upper curves) disks at various shear rates.

Also shown on Figure 6 is the effective compressibility calculated for a
30-particle system of frictional disks with a friction coefficient of yu =
0.50, at three different shearing rates. These three curves lie essentially
on top of one another (and significantly above the frictionless particle
curves) until a packing fraction of 0.700 is reached at which point they
diverge with the lowest shear rate producing the highest effective
compressibility. This lowest shear rate curve has the lowest kinetic energy

density and, at the high solids packing fractions, includes many continuous

sliding and rolling contacts. This behavior deviates most significantly, from
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the thermodynamic equilibrium smooth rigid disk behavior. A1l compressibility
curves on Figure 6 approach unity as the solids fraction goes to zero --
corresponding to near ideal-gas-1ike behavior.

To test the accuracy of our steady-state shear calculations, we compared
our calculated viscosity with that calculated by Evans?* for a
non-equilibrium molecular dynamics system of soft disks interacting with an
inverse 12th-power potential. We modified our model to use the same inverse
12th-power interaction potential. A 30-particle system was sheared at a
strain rate corresponding to Evanﬁ' reduced strain rate of 0.248. The average
deviatoric velocity was constrained to its initial value for the entire
calculation using Hoover's constrained equation-of-motion techniquel!. The
time-averaged reduced viscosity calculated for this system was approximately
2.5% higher than Evans' value of 2.835. A number of factors may have
contributed to this slight discrepancy: the use of a 30-particle system
instead of the 32-particle system used by Evans, the use of a cumulative
average that included some non steady-state results early in the calculation,
and the use of a perfectly square calculational cell (the aspect ratio of
Evans' calculational cell is not known). In view of these considerations we

Jjudged that our model was functioning essentially as intended.

Steady-State Shearing Results

A parameter study was conducted to examine the effects of shear rate,
solids packing, friction, and elasticity on various rheologic properties of an
assembly of particles in steady shear. A representative two-dimensional
granular material consisting of 30 identical disks, each with unit mass and
unit radius, and an interparticulate normal stiffnéss of 1 x 10 and an
initial tangential stiffness of 0.8 x 10° was used for this study. The

shear rate was varied from 1 to 10 inverse time units and the fraction of the
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cell area covered by particles (i.e., the solids fraction) was varied from
0.025 to 0.825. The friction coefficient was set at 0.5 for most
calculations; however, calculations were also done with p = 0.0 to observe
the sensitivity of the results to the inclusion of particle rotation. Fixed
coefficients of restitution of 0.6, 0.8, and 1.0 were examined along with a
representative variable coefficient of restitution material (with S = 73 in
equations 4 and 5). The middle (solid) curve on Figure 5 gives the rotational
coupling for the nominal material parameters with y = 0.5 and e = 0.80. An
explicit ca]cuiationa] time step of 4.44 x 10°5 was used in all

calculations. THis corresponds to.roughly 50 time steps during a typical two
particle collision. In addition to the 30-particle results described below,
systems with 12 and 56 particles were also examined at a solids concentration
of v = 0.700. The 12-particle system gave considerably higher values for
both normal and shear stresses; primarily due to continuous contact arches
that temporarily formed across the entire periodic cell height. The
resulting, short-duration, high stresses increased the cumulative time
averages of the stress components by as much as 30 to 40% above the
30-particle averages. The 56-particle system gave resdlts that were generally
within the statistical scatter of the 30-pa?tic1e results. Thus, we used the

30-particle system as an efficient representative sample for the uniform

shearing calculations.

Effective Viscosity, Temperature and Pressure

Bagnold®** studied neutrally buoyant wax spheres and used simple physical
arguments to hypothesize that fhe stresses in shearing granular assemblies
should be proportfonal to the square of the shéar rate. Since Bagnold's
arguments apply equally well to two-dimensional systems, we examined the

variation of shear stress with shear rate in our periodic cell system.
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Figure 7. Effective viscosity as a function of strain rate calculated for a
system of 30 disks in steady shear at a solid fraction of

v = 0.50.
Figure 7 shows the effective viscosity calculated for our 30-particle system
as a function of strain rate, at a solids packing fraction of v = 0.500.
Bagnold's shear stress variation would produce straight lines passing through
the origin on this graph. As can be seen from this figure, our calculated
shear stress does increase near]y'with the square of the shear rate for
particles with a constant coefficient of restitution. However, for disks
interacting with the variable coefficient of restitution model of equations
(4) and (5), the shear stress increases much less rapidly. We examined this

behavior at a number of solids packing fractions and obtained similar
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Figure 8. Effective viscosity as a function of solids concentration
calculated for 30 inelastic frictional disks in steady shear at

various rates.
results. Figure 8 shows the calculated viscosity as a function of solids
packing fraction for various strain rates. Thé shape of each of these curves
(i.e., high at both low and high solids fractions and passing through a
minimum at a solids fraction near 0.3) is typical of the behavior calculated

for each component of the stress tensor. This behavior is understandable when
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we realize that these curves are constant-shear-rate curves, not isotherms.
As the solids fraction in the system decreases the cell size increases
proportionately. In order to obtain the same mean shear rate the velocity of
the moving periodic image cells also increases inversely with the decrease in
solids packing. However, at lower partic]e densities the frequency of
collisions decreases more rapidly than simply the inverse of the particle
density. Thus, there are fewer dissipative collisions at low density. The
net result is a significant increase in the mean deviatoric particle
velocities at low solids packing. Figure 9 is a plot of the r.m.s. deviatoric
particle velocity (divided by the product of the shear rate and the particle
diameter) as a function of solids packing fraction. This dimensionless
velocity ratio corresponds to the inverse of the dimensionless velocity ratio,
Rgs used by Jenkins and Savage! and by Lun et al.®. The (solid) central
curve on Figure 9 is based on calculations at three different shear rates and
shows that the deviatoric particle velocity does indeed scale directly with
the shear rate (for particles with a constant coefficient of restitution).
Each of the other (dashed) curves on Figure 9 was generated from calculations
at just one shear rate (¢ = 10). However, it is expected that calculations
at other shear rates would be essentially the same except for the variable
coefficient of restitution (lowest) curve. For the variable coefficient of
restitution model, lower shear rates correspond to a lower mean deviatoric
velocity, resulting in a higher mean effective coefficient of restitution as
the shear rate is reduced. A few calculations were performed at low shear
rates with the variable e model and they did indeed 1ie significantly above
the variable e curve of Figure 9, corresponding to a higher mean effective
coefficient of restitution. (These points were omitted from the figure to

provide better clarity for the fixed e curves).
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Figure 9. Calculated r.m.s. deviatoric velocity ratio for 30-disk system at
shear rates of 1, 5, and 10 with u = 0.5 and e = 0.80 (solid
curve) and with other values of e and y including the variable e
model at a shear rate of 10 (dashed lines).

The substantial increase in mean deviatoric particle velocities and the
large mean free path between collisions at Tow solids concentrations causes
all components of the stress tensor to be dominated by kinetic contributions
at these densities while at high solids concentrations collisional (or
potential) contributions dominate each component of the stress tensor. Figure
10 shows a representative plot of the total pressure P= (pxx + pyy)/Z and
the kinetic and collisional components of that pressure as functions of so}ids
packing fraction. As seen in this figure, the kinetic and potential
components are nearly edual at a packing fraction near v = 0.30, with the

kinetic term dominating at all lower solids concentrations and the collisional
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Figure 10. Calculated total pressure, kinetic, and collisional components of
the pressure for 30 inelastic, friction particlies in steady shear
flow. Symbols represent time average for each calculation at each

condition,

term dominating at all higher densities. This result is consistent with the

two-dimensional calculations of Campbell and Gong® which also show the
kinetic and potential terms having comparable magnitude near v = 0.3. This
result is also in qualitative agreement with the theory of Lun et al.? which

predicts similar behavior for three-dimensional systems of smooth inelastic
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particles. Two-dimensional Monte-Carlo simulatioﬁs of inelastic frictional
disks currently in progress by'Hopkins and Shen2?® also agree quantitatively
with these results for solid fractions in the range from 0.1 to 0.6.

The abrupt change in slope of the total pressure curve above a solids
fraction of 0.775 in the present study occurs because the mode of shearing
changes above that density. At densities below v = 0.775 the shearing is
nearly uniform across the calculational cell and "snapshots" of the particle
configurations look very much 1ike a two-dimensional fluid. At high densities
crystalline regions occupy a 1§rge part of the cell with shearing usually
occuring in a distinct layer. Figure 11a shows a typical particle position
distribution for a solids fraction of v = 0.650 and Figure 11b shows a
typical "snapshot" for a calculation with a solids fraction v = 0.800. In
this figure, the deviatoric ve]oéity and the rotational velocity of each
particle are shown as vectofs within each partic]e.: At the high density
rolling contacts clearly exist and most of the shearing occurs in a fixed
layer with hexagonal crystalline regions above and below the shear zone. This
layered structure was typical of all high solids concentration calculations.
The exact location of the shearing zone (of rolling layer) was not fixed and
during a calculation it could §h1ft up or down in the cell. The wide spread
between the two calculated stress points on.Figure 10 at a solids fraction of
v = 0.800 occurred because in one calculation (the Tower point) a single
rolling layer existed in exactly the same location for the entire calculation
while in a subsequent calculation with a different set of initial random
velocities (the upper point) the location of the shear zone kept shifting from
one row to another. Each time a shift occurred temporary high-stress arches
would form as the material "adjusted" from one configuration to the next.

These temporary arches, while of short duration, had stresses large enough to

-25-



&, »
QY ) Ay ) N
N = W o
De e »
~/ 7 N N I ~/ / v N
N =~ 3\ ~
<\ o\
\ A
A %7 J W)\ /
N & N

A e * Al s
(a) Yy ) oy )
~ - ~ o
Dx » , )
- ANCANL NI A AN S
) \\v o)\
N N
W/ . W v
N A N
O - »&
—3 CJ 3 AN » /) CJ 2z
(b)

Figure 11. Primary calculational cell and 3 per

the same 30 inelastic frictional par
(a) with a solids fraction v = 0.65
fraction v = 0.80. Deviatoric veloc

velocities shown for each particle.

-26-

jodic -image cells, each showing
ticles during steady shearing

and (b) with a solids
ity vectors and rotational



affect the cumulative time-averaged stress for the entire calculation.
Because of the variable nature of these shearing simulations at densities
above v = 0.775 they were only included in a Timited number of cases.

The effect of interparticulate friction coefficient on the viscosity is
shown in Figure 12, Three steady-state shearing calculation sets are shown.
The partially filled circles are for frictionless particles (i.e., no
rotations), the open circles are for a coefficient of friction y = 0.5 and
the triangles are from Campbell and Gong's rigid body simulations® with
B = 0.0, corresponding roughly to y = », This plot shows that the
inclusion of friction (and thus additional energy losses during glancing
collisions) significantly reduces the shear stress at low packing fractions
where the stress is primarily due to the momentum carried by the particles.

At high packing fractions, the inclusion of fri;tion on the other hand,
increases the shear stress significantly because the tangential forces acting
during contacts are more effective at transmitting shear stress than horma]
forces acting alone. The pressure, (px* + pxy)/z, is also increased at
high density when. friction (and particle rotation) is included, although it is
not increased by nearly as large a factor as the shéar stress. The
dimensionless shear stress results of Campbell and Gong's rigid body
numerical calculations were scaled py multiplying by our effective particle
material density, pp = 1/x, and by the shear rate, ¢ = 10, to put them
in the same units as the two-dimensional viscosity plotted in Figure 12.
Their y = = results are generally within 10% of our y = 0.5 values and,
at lTeast at Tow solids fraﬁtions, they are consistent with the notion that
increasing the energy losses reduces the shear stress. The only point of
significant disagreement appears at the highest solids fraction shown,

v = 0.78, where there is a factor of two discrepancy betwee; our curve and

their reported value. It is quite possible that differences in friction,
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Figure 12. Calculated effective viscosity in steady shear flow with (u
0.50) and without friction (u = 0.0) and as calculated by .
Campbell and Gong® with y = =.

boundaries and sample size between our work and that of Campbell and Gong

results in a layered shearing structure at a slightly lower packing fraction

in their 80-particle planar boundary model than in our 30-particle periodic

boundary model. Although not shown on Figure 12, our calculations at
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v = 0.800 gave viscosity values varying with time and ranging from 55 to
153, as the system shifted from one shear zone location to another, with an
average value just over 100. This is within 10% of an extrapolation of
Campbell and Gong's rigid body calculations.

These calculations are in contradiction with the three-dimensional rough
particle theory of Lun and Savage* whfch predicts that the collisional part
of the shear stress will be reduced by including frictional effects.
Specifically for e = 0.8 they predict a reduction of collisional shear stress
of approximately 20% in going from no friction (B = -1) to a very high
friction (B8 = 0.0). Figure 12, shows on the other hand, a significant
increase in the total shear stress when frictional interactions between
particles are added. This increase is on the order of 50% at
intermediate-to-high packing fractions where the stress tensor is dominated by
collisional terms. OQur total shear stress in this region, including
frictional interactions, agrees with that of Campbell and Gong; however, since
they do not report values for 8 = -1 (no friction) their calculations do not
necessarily corroborate the increase in the collisional shear stress when
friction effects are considered.

Figure 13, shows how varying the coefficient of restitution affects the
calculated shear stress vs. solids fraction curve. A1l cases plotted on this
figure have the same coefficient of friction u = 0.500. As can be seen,
changing the coefficient of restitution has the largest effect at low solids
fractions where the stresses are primarily due to the momentum carried by the
particles. Campbell and Gong report similar results and their calculations
for e = 0.6 are about as close to the lower curve on this figure as their

e = 0.8 calculations were to the y = 0.5 1ine on Figure 12 (i.e., within

about 10% except at the very lowest solids fractions). However, their e = 1.0

calculations give shear stresses that are significantly lower than our e = 1.0
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Figure 13. Calculated effective viscosity in steady shear flow using various
coefficients of restitution.

curve at Tow solids fraction (with more than a factor of 2 difference at those

low densities), but are essentially the same as our calculations at v =

0.50. This discrepancy at low density is probably a direct consequence of the

greater energy loss with their B8 = 0.0 collision operator than is produced

with our u = 0.5 friction model. The lower curve on Fjgure 13 shows the

behavior we calculate with the variable coefficient of restitution model
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(equations 5 and 6). This curve shows that as the packing fraction is reduced
the higher mean deviatoric velocities cause the variable e material to behave

like a material with a Tower effective coefficient of restitution.

Stress and Velocity Distributions

-Figure 14 shows the "dynamic friction coefficient", tan b = lpxyl/pyy,
as a function of solids packing fraction, v. For frictionless particles the
present two-dimensional calculations with e = 0.80, give a value of
tan b4 = 0.4 over most of the density range, increasing to near 0.5 at
extremely 1qw packing. This is very close to the behavior predicted by
Lun et al.® for three-dimensional frictionless particles with e = 0.80.
Further, the addition of frictional interactions increases tan ¢d to near
0.6 for intermediate solids fractions (.3 < v <.65). This behavior is
consistent with Lun and Savage's three-dimensional prediction* that strong
frictional coupling will increase the dynamic'friction coefficient from 0.40
to about 0.60 (as B changes from minus one to near zero) for a system with
e = 0.80. The solfd central curve on Figure 14 includes data from three
different shearing rates to confirm that for material with a constant
coefficient of restitution the dynamic friction coefficient is essentially
independent of shear rate. This stress ratio does depeﬁd on the material
properties and solids fraction as shown by the other curves on this figure.
Campbe]l and Gong obtain simi];r curves for e = 1.0, 0.8, and 0.6; however,
their calculations show a slightly steeper variation with solids fraction than
the present work. In each of the three cases e = 1.0, 0.8, and 0.6, their
calculations of tan b4 start 5% to 10% higher at low solids fractions,
cross the curves of Figure 14 near v = 0.3 and continue to decrease more
rapidly than these curves as the solids fraction increases. At solids
fractions near v = 0.6 their calculated values are 10% to 30% lower than

those of Figure 14.
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shear for 30 inelastic, frictional disks at three shear rates

(solid curve) and with various inelasticity and friction parameter
values (dashed curves).

Laboratory maesurements of the dynamic friction coefficient for shearing

systems of glass beads?7°2® and polystyrene beads?? under rapid

shearing conditions in annular shear cells produced dynamic friction

coefficients in the range from 0.53 to 0.63 at densities near 80% of random

close packing (a density which may correspond roughly to solids fractions in

the range 0.65 to 0.70 for two-dimensional configurations).

Since these

materials have a coefficient of restitution between 0.8 and 0.95 we might
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expect them to exhibit behavior that would 1ie between the e = 0.8 and e = 1.0
lines on Figure 14 . A value of tan b4 greater than 0.53 is obtained in
these calculations only for values of e at or below 0.80 in the density range
0.65 < v < 0.70. This is just outside of the range of the experimental
results; however, considering the difficulty in making any comparison between
two-dimensional and three-dimensional systems, the proximity of these
calcu]afed two-dimensional values to the measured values is quite encouraging.

The variable restitution coeff1cient calculations produce a dynamic
friction coefficient that diverges as v approaches zero, an extension of the
trend by the constant e calculations showing a higher value for tan ¢d for
lTower effective coefficients of restitution. This behavior can best be
understood by examining the anisotropies in the stress and velocity
distributions at these low solids concentrations.

Figure 15 shows the ratio of the two diagonal stress tensor components,
pxx/pyy, where pyy is the stress perpendicular to the shearing motion.
The central solid curve in this figure, correﬁponding to e = 0.8, includes
calculations at three different shearing rates, demonstrating again that the
curves with e = constant are independent of shearing rate. At moderately high
solids fraction (i.e., froh v = 0.4 tov = 0.7), where the stress tensor
is controlled by collisional terms we obtain an almost isotropic distribution
of pressure. However, as the solids fraction decreases and/or the energy
dissipation in the system increases we find the pressure distribution becoming
moré and more anisotropic. Each of the three curve§ e =1.0, 0.8, and 0.6
given in this figure agree with corresponding rigid bddy calculations obtained
by Campbell and Gong® (using B = 0.0) in the solids fraction range
0.1< v <.0.60. This anisotropy jn the pressure distribution occurs because
at low solids concentrations the deviatoric ve]ocitigs are also very

anisotropic. At low densities the mean free path for a particle is quite long
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Figure 15. Calculated ratio of horizontal to vertical stress tensor components
during steady shearing in the x-direction, for 30 inelastic,
frictional disks showing anisotropic distribution at low solids

concentrations.
and it is possible for a particle to travel vertically through the system.a
significant number of particle diameters before encountering another
particle. The more vertical distance traveled along a straight line
(collision free) trajectory the greater the deviatoric velocity of the
particle is likely t6 become (since the x-velocity.of the particle remains

constant, but the "mean field velocity", Uys changes linearly with vertical
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position). Thus, when collisions do occur in these low concentration systems
they are much more likely to have a large relative x-velocity than a large
y-velocity. In a perfectly elastic system the random nature of collision
interactions would soon produce an equi-partitjon of kinetic energy in the x-
and y-directions; however, in the dissipative collisions of these calculations
the kinetic energy gets dissipated before a sufficient number of collisions
occur for it to become distributed isotropically. The anisotropic shearing
deformation continues to feed kinetic energy into the x-direction by virture
of the long mean free paths between collisions at low solids concentrations so
that the net result is an anisotropic velocity distribution. Figure 16a shows
the time-averaged distribution of velocities in the X, ¥, and @ directions

in a representative calculation with u = 0.5, e = 0.8, and e =10 at a

solids fraction of v = 0.65. The x- and y-velocities in this figure are
distributed almost identically about zero, while the mean particle rotation is
displaced somewhat from zero. Figdre 16b shows the same velocity
distributions for a lower solids concentratipn (v = 0.1) and with more
dissipative interactions (e = 0.6, u = 0.5). In this figure the deviatoric
x-velocity distribution is significantly different from the y-velocity
distribution. It should be noted that the Pyx stress component exceeded the

pyy component in the calculation corresponding to Figure 16b by a factor of

more than 2.5.

Another stress ratio examined is the ratio of the shear stress to the

pressure, 2ip, 1/(p,, + pyy). This quantity is plotted in Figure 17

and, as can be seen, is much less dependent on the solids concentration than
the dynamic friction coefficient of Figure 15. It does still show a -

consistent variation with particle interaction parameters u and e.

-35-



Eﬁﬂquﬂwmm[ﬂ'n]Tﬁmﬁ*Trrrrn
: 1
.06 (a) %
.05 o -
- 1
L -
.04 | ]
i ]
. .03 y -
F- -
. : ]
o i J
2 02 ;
o
x - ]
a - J
.01 | =
0. ‘
TR ING L ~a@RFooE
FrTrrT L
u 3
10 F (b) ]
- -
.09 F ]
.08 F E
.07 F =
.06 | .
.05 F j
> C ]
5 " ]
P .04 -
2 : 5
@ .03 - E
x C ]
o . 4
.0e r 3
.01 F 3
0 :4_|_A__|Jf £
o o o o o o o o o
(8] 0 o n n o Tq] o
[q¥] — — t — —_ n
1 ) )
VELOCITY

Figure 16. Cumulative time average of velocity probability distributions in
the x, y, and © directions for a set of 30 particles in steady
shear with (a) solid fraction v = 0.65 with e = 0.8, u = 0.50,
and (b) solids fraction v = 0.10, e = 0.6, p = 0.50.

-36-



0.6

ot
o

[
FY

Shear stress to pressure ratio —p"/P

0.3}
é=10
0.2} Friction & restitution coefficients | —
(o) u=0.5 e=0.8
@® r=00 e=0.8
0.1~ V u=05 e=1.0 m
A u=05 e=0.6
0.0 R | . | N 1 N 1
0.0 0.2 04 0.6 0.8

Solids fraction v

Figure 17. Calculated ratio of shear stress to total pressure during steady
shear for 30 inelastic, frictional disks.

The velocity distributions of Figure 16 included the distribution of
rotational velocities with a clearly non-zero mean Valué. In all shearing
calculations involving frictional particles. we found the mean rotational
velocity was nearly equal to one half the shear rate, e/2. Figure 18 shows
the cumulative average spin values obtained in over 50 separate calculations.
In every case the mean spin is near €/2. At very low solids concentrations
the calculations deviate from this behavior, but at these concentrations the
rotational velocity distribution is very broad and our calculations of mean
rotational velocity are of low accuracy. These low solids concentration

calculations took considerably more computer time than calculations at higher
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Figure 18. Calculated mean rotational velocity for disks in a 30-particle
system undergoing steady shear «t various strain rates showing mean

spin nearly equal to one~half the strain rate.
densities so they have not been repeated to improve the accuracy of the low

concentration spins. These rotational velocity results are consistent with
other researchers' calculations both for frictional particles® and for

asymmetric elastic particlest*.

'CONCLUDING REMARKS

A non-equlibrium molecular-dynamics-1ike calculational technique has been

employed to examine the effects of inelasticity and friction on shearing two-

dimensional assemblies of disks. This simulation of granular flow deals with

a very simple system of equal-sized symmetric particles, yet it provides a

great deal of insight into the mechanisms that cause the observed behavior
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(e.g., the anisotropy in the pressure and velocity distributions at low
density). Much of the two-dimensional granular flow behavior calculated in
this study is in qualitative agreement with recent microstructural theories
developed for three-dimensional systems. However some of the features were
not expected, such as the increases in the collisional contribution to the
stress tensor components at moderately high densities when frictional effects
are included. |

Qualitative comparisons between two-dimensional computer simulations of
granular flow and physical tests with particles restricted to two-dimensional
motion have shown very great similarity®’2?; however, almost no
quantitative comparisons have Been performed. This is partially because few
experimental studies on two-dimensional systems have included measurements of
stress, deviatoric velocity and density distributions. Likewise, few
calculational models can handle the three-dimensional particles that are used
in most laboratory tests. This situation will soon change. At least two
independent studies are underway that will provide detailed particle
trajectory, velocity and density distribution measurements for gravity flow on
inclines®® and vertical channel and rectilinear shear flow®! of two-
dimensional systems. When data from these experiments are available it will
be possible to make quantitative comparisons between calculations 1ike the
present study and measurements on comprable systems. Likewise, as the
capabilities of the computer models are improved to include various
three-dimensional conf%gurations it will be possible to perform direct
computer simulations of many of the existing laboratory studies on granular

systems. We anticipate that such comparisons will be possible within the next

year or two.
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